Asymmetric Reductions catalysed by Chiral Shift Reagents

Sadek Zehani and Georges Gelbard"

C. *N. R.S., Laboratoire des Materiaux Organiques, B. P. 24, 69390 Vernaison, France*

The reduction of methyl phenylglyoxylate to give optically active methyl mandelate by NADH models is catalysed by chiral shift reagents used as Lewis acids.

models described require $Mg(C1O₄)₂$ as a catalyst; in fact, it is thought to mimic the role of zinc which is present in the

The reduction of activated aldehydes and ketones by **NADH** enzymatic system.2 In the course of a study on asymmetric models is currently an active research area.¹ All systems and reduction of activated carbonyl groups by chiral NADH models described require Mg(ClO₄)₂ as a catalyst; in fact, it is models, we checked the possibility always used in stoicheiometric amounts. Magnesium is using achiral **NADH** models in the presence of chiral Lewis

Table 1. Reduction of methyl phenylglyoxylate to methyl mandelate catalysed by lanthanide β -diketonates.

Entry	NADH model	Catalyst	Solvent $(t^{\circ}C)$	% Yield (time/day)	$[\alpha]_{D}$ /°	$% E.e.$ ^e (abs. conf.)
	(1a)	$Eu(fod)_{3}^a$	MeCN(70)	90(7)		
2	(1b)	Eu(fod) ₃ ^a	MeCN(70)	39(7)		
3	(1a)	$Nd(F_6acac)3b$	MeCN(70)	68(6)		
4	(1b)	$Nd(F_6acac)_3^b$	MeCN(70)	69(6)		
	(1a)	$Eu(tfc)_{3}c$	$CH2Cl2$ (room temp.)	30(8)	$+58.5$	44(S)
6	(1b)	$Eu(tfc)_{2}c$	$CH2Cl2$ (room temp.)	28(8)	$+73.33$	55(S)
7	(1b)	$Eu(tfc)_{\gamma}c$	MeCN(70)	>98(3)	$+33.8$	25(S)
8	\mathbf{a}	$Eu(hfc)_{3}^{\text{d}}$	$CH2Cl2$ (room temp.)	20(20)	$+41.25$	31(S)
9	(1b)	$Eu(hfc)_{3}^{\text{d}}$	MeCN(70)	75 (6)	$+33.57$	25(S)

a **Tris-(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-octane-3,5-dionato)europium.** was prepared by the method in ref. 3. *c* Tris-[3-(trifluoromethylhydroxymethylene)-(+)-camphorato]europium. ^d Tris-[3-(heptafluoropropylhydroxymethylene)-(+)-camphorato]europium. ^e From the optical rotation of pure (S)-methyl mandelate $[\alpha]_{D^{30}} + 133.9^{\circ}$ (c 1.0, 95% aq. EtOH). Tris-(**1** , **1,l ,5 ,5 ,5-hexafluoropentane-2,5-dionato)neodymium**

The reduction of methyl phenylglyoxylate to give methyl mandelate was first achieved by using N-benzyldihydronicotinamide **(la)** or the dimethyl Hantzsch ester **(lb)** as NADH models in the presence of catalytic amounts of lanthanide β -diketonates [equation (1); Table 1; entries 1-4].[†] (2a)

(2a)

(2a)

The reduction of methyl phenylglyoxylate to give in

mandelate was first achieved by using N-benzyldihydro

namide (1a) or the dimethyl Hantzsch ester (1b) as N

models in the presence of catalytic amoun

$$
\text{PhCOCO}_2\text{Me} + (1) \xrightarrow{\text{Lewis acid}} \text{Ph}^* \text{CH(OH)} - \text{CO}_2\text{Me} + (2) (1)
$$

We then studied chiral europium β -diketonates, shift reagents for the determination of enantiomeric excess (e.e.) by n.m.r. spectroscopy; the catalytic activity is somewhat

MeO₂C
Me and complexes led to methyl mandelate
Me and CO₂Me with excess of the (S)-enantiomer.
This is the first example of the use of shift reagents as
catalysts in organic synthesis;⁴ the only previous reports of lower at room temperature (entries 5, *6,* and **8)** but a significant degree of asymmetric induction did occur. The NADH models **(la)** and **(lb)** behaved quite similarly; the most important feature is the nature of the chiral ligand, the trifluoromethyl ligands leading to better inductions than the heptafluoropropyl ones. In all cases, the chiral ligands derived from (+)-camphor and complexes led to methyl mandelate with excess of the (S) -enantiomer.

This is the first example of the use of shift reagents as chiral shift reagents concern the hetero Diels-Alder reaction.5

Received, 9th April 1985; Corn. 466

References

- For reviews, see: R. M. Kellog, *Top. Curr. Chem.,* **1982,101,111;** *Angew. Chem., Int. Ed. Engl.,* **1984, 23, 782; J. L.** Pierre, *L'Actualitt Chimique,* **1984, (7-8), 33;** R. J. Kill and D. **A.** Widdowson in 'Bioorganic Chemistry,'ed. E. E. van Tamelen, Vol. **IV,** Academic Press, New York, **1978,** p. **239;** A. Ohno and Y. Ohnishi, *Kagaku no Ryoiki Zokan,* **1976, 110, 57.**
- C. **I.** Braenden in 'Pyridine Nucleotide Dependent Dehydrogenases,' ed. H. Sund, Springer Verlag, Heidelberg, **1977;** J. B. Jones and J. F. Beck in 'Applications of Biochemical Systems in Organic Chemistry,' eds. J. B. Jones and D. Perlman, Techniques of Chemistry, A. Weissberger, Senior ed., Vol. **X,** Wiley, New York, **1976,** p. **107.**
- E. W. Berg and J. J. Chiang Acosta, *Anal. Chim. Acta,* **1968, 40, 101; F.** Halverson, **J. S.** Brinen, and J. R. Leto, *J. Chem. Phys.,* **1964, 40, 2790.**
- **B.** M. Trost and M. J. Bogdanowicz, *J. Am. Chem. SOC.,* **1973,95, 2038; T.** C. Morill, R. A. Clark, D. Bilobran, and D. **S.** Youngs, *Tetrahedron Lett.,* **1975, 397.**
- M. Bednarski, C. Maring, and **S.** Danishefsky, *Tetrahedron Lett.,* **1983,24,3451;** *J. Am. Chem. Soc.,* **1983,105,3716; S.** Danishefsky, D. F. Harvey, G. Qaullich, and D. J. Vang, *J. Org. Chem.,* **1984, 49, 392;** M. M. Midland and R. **S.** Graham, *J. Am. Chem. SOC.,* **1984, 106, 4294.**

t Reductions were carried out under nitrogen in inactinic glass flasks on a **2** mmol scale with a **1** : **1** : **0.1** molar ratio of substrate : NADH model : catalyst; dried and deaerated acetonitrile **(20** ml) was added through a septum. After the appropriate heating time, the mixture was quenched with methanol (2 ml) and concentrated, and methyl mandelate was isolated by preparative layer chromatography (silica gel with CHC1,-Et,O, **95** : *5).* Optica'f rotations were measured in ethanol, **95** "C.